Passivity of metals and metallic alloys

Jacek Banaś

3kX

5 um

Wagner definition of passivation

Metal is passive when its corrosion in course of chemical or electrochemical reaction is lower at higher affinity of reaction than at lower affinity of chemical or electrochemical process

C. Wagner: Corrosion Science 5, 751 (1965)

Mechanism of passivation

Me + n/m X^{-m} \rightarrow MeX_{n/m} + ne

solid state reaction

precipitation mechanism

Oxide passivation

Water molecule is a source of oxygen

Ni +
$$H_2O \rightarrow NiO + 2H^+ + 2e$$

2Cr + $3H_2O \rightarrow Cr_2O_3 + 6H^+ + 6e$

In anhydrous environments other molecules can be a source of oxygen (undissociated molecules of oxy-acids: H_2SO_4 , H_3PO_4 , HNO_3 , HCOOH)

Cr +
$$H_2SO_4$$
 → CrHSO_{4 ad} + H⁺ + e
CrHSO₄ → CrOOH + SO₂

B. Stypuła, J. Banaś: Electrochim. Acta 38, 2309 (1993)

Fe + 2HCOOH
$$\rightarrow$$
 FeOOH + 2CO + 3H⁺ + 2e

J. Banaś, B. Mazurkiewicz, W. Solarski, K. Banas: Material Science Forum Vol.185-188, 845 (1995),

Mechanism of passivation in aqueous solutions

K. Schwabe, S. Hermann, W. Oelssner: Passivity of Metals, Proc. of the Fourth Int. Symp. on Passivity, ed. by R.F. Frankenthal and J. Kruger, N.Y. 1977,

Mechanism of iron passivation in aqueous solutions

W.J. Lorenz, K. E. Heusler in Corrosion Mechanisms ed. Marcel Dekker Inc. N. York 1987

High field mechanism (hfm) of oxide growth

K.J. Vetter: Elektrochemische Kinetik, Springer Verlag 1962

High field mechanism (hfm) of oxide growth

Point defects model - PDM

 $V_M^{\chi'}$ – cation vacancy

 $V_0^{**} - oxygen (anion)vacancy$

D.D. Macdonald, Electrochimica Acta 56, 1761-1772 (2011)

Oxide growth

describing oxide growthnecessary to oxide growth in the timenecessary to oxide growth in the timedetermining oxide growthparabolic t t t t t parabolic $q_w = k_p \cdot t^{\frac{1}{2}}$ $i_w = \frac{1}{2}k_p \cdot t^{-\frac{1}{2}}$ $-\frac{1}{2}$ diffusionlogarithmic $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 exchange place, high field migration 0.5 0.5 0.5 0.5 0.5 0.5 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ $0.5^{-250 \cdot C}$ 0.5 0.5^{-2	Relation	Charge q_w	Current density i_w	Slope	Mechanism
oxide growthgrowth in the timegrowth in the timegrowthparabolic $q_w = k_p \cdot t^{\frac{1}{2}}$ $i_w = \frac{1}{2}k_p \cdot t^{-\frac{1}{2}}$ $-\frac{1}{2}$ diffusionlogarithmic $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 exchange place, high field migration 0.5 <td>describing</td> <td>necessary to oxide</td> <td>necessary to oxide</td> <td></td> <td>determining oxide</td>	describing	necessary to oxide	necessary to oxide		determining oxide
$\frac{t}{1}$ \frac{t}	oxide growth	growth in the time	growth in the time		growth
parabolic $q_w = k_p \cdot t^{\frac{1}{2}}$ $i_w = \frac{1}{2}k_p \cdot t^{-\frac{1}{2}}$ $-\frac{1}{2}$ diffusionlogarithmic $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 exchange place, high field migration $-\frac{1}{2}$ <	_	t	t		
parabolic $q_w = k_p \cdot t^2$ $1_w = \frac{1}{2} k_p \cdot t^2$ $-\frac{1}{2}$ logarithmic $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 exchange place, high field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1 bigh field migration	1 1	1	$1 - \frac{1}{2}$	1	diffusion
logarithmic $q_w = k_1 + k_1 \cdot \ln t$ $i_w = k_1 \cdot t^{-1}$ -1exchange place, high field migration -3 -3 -3 -3 -1 <td>parabolic</td> <td>$q_w = k_p \cdot t^{\overline{2}}$</td> <td>$i_{w} = -\frac{1}{2}k_{p} \cdot t^{-2}$</td> <td>$-\frac{1}{2}$</td> <td></td>	parabolic	$q_w = k_p \cdot t^{\overline{2}}$	$i_{w} = -\frac{1}{2}k_{p} \cdot t^{-2}$	$-\frac{1}{2}$	
logarithmic $q_w = k_1 + k_1 \cdot lnt$ $1_w = k_1 \cdot t^{-1}$ high field migration	1		• 11	1	exchange place,
$\begin{array}{c} \begin{array}{c} -2 \\ -3 \\ -3 \\ -4 \\ -5 \\ -5 \\ -6 \\ -7 \\ 0 \end{array} \begin{array}{c} 1 \\ 20 \end{array} \begin{array}{c} 250 \end{array} \begin{array}{c} \times \\ 250 \end{array} \begin{array}{c} \times \\ 250 \end{array} \begin{array}{c} \times \\ 200 \end{array} $	logarithmic	$\mathbf{q}_{\mathrm{w}} = \mathbf{K}_1 + \mathbf{K}_1 \cdot \ln \mathbf{t}$	$1_{w} = k_{1} \cdot t^{-1}$	-1	high field migration
lg(t / s)	$\begin{array}{c} -2 & 0.5 \\ -3 & -3 \\ -3 & 150 \\ -4 & -4 \\ -5 & -6 \\ -6 & 1.0 \\ -7 & 0 & 1 \end{array}$		diffusion Growth of oxi in aqueous so K.E. Heusler, B. Kusi 1443 (1990) high field r	ide film on iron s olutions, pH 7.4 - ian, D. McPhail: Be nigration	surface - 7.8 r. Bunsenges. Phys. Chem. 94,

Spontaneous passivation (self passivation)

Effect of oxidant concentration on spontaneous passivation of metal

Dissolution moderators or blockers Passivity promotors 1000 Ti ∆E_{ad}(oxygen) at Θ->0, kJ/mol 800 A1.. Nb W Cr Mo 600 Fe 400 Ni 200 Cu Zn Pt 120 160 4080 200 0 E_{M-M}, kJ/mol

Passivity promoters and dissolution moderators according to the synergy between the energy of the metal-metal bonds and heat of adsorption of oxygen

Passivity of metallic alloys

P. Marcus: Corr.Sci. 36, 2155 (1994)

Effect of chemical composition on passive behaviour of the alloy

Stationary polarization curves of austenitic Fe-Cr-Ni alloys in 1M H_2SO_4

Model of passive film on pure chromium

Stationary polarization curves of Fe-Si alloys in $1 M \ \text{H}_2\text{SO}_4$

% Cr	Structure of passive film	thickness A
0	well oriented spinel	36
5	well oriented spinel	27
12	weak oriented spinel	21
19	mainly amorphous	19

Effect of chromium on the structure of passive film on Fe-Cr alloys in neutral aqueous solutions J.Kruger in Passivity of Metals, ed.by Electroche. Soc. Inc. Princetown ,N. Jersey 1978

27 C

02

Oxide growth (Cr/Cr₂O₃)

STM topographic images of the Cr(110) substrate after exposure to 0.75 L (a) and 2.25 L (b) of oxygen at 300 K.

STM topographic images of the oxide film formed by exposure of Cr(110) to 3.4 L (a), 7.5 L (b) and 11.3 L (c) of oxygen at 625 K and subsequent annealing at 925 K.

352 C + 652C annealing

V. Maurice, S. Cadot, P. Marcus, Surface Science 458 (2000) 195–215

Oxide growth (Cr/Cr_2O_3)

At 300 K, a granular and non-crystalline oxide is formed, which grows with a constant ${}^{\sim}Cr_{2}O_{3}$ stoichiometry up to a limiting thickness of 0.9 nm. The film is hydrated with a water content of 10–20%, which decreases upon annealing. Nuclei of oxide with a lateral dimension of ~0.7 nm and a height of ~0.2 nm have been observed in the nucleation stage. These nuclei grow predominantly laterally and coalesce to fully cover the substrate surface prior to the thickening stage.

At 625 K, a first stage of oxygen adsorption is observed in which stripes 1.5–2.3 nm wide and parallel to the Cr[001] direction are observed after annealing in UHV. They correspond to narrow segments of mixed and close-packed planes of O atoms and ions having a geometry and orientation similar to those of the anions planes in the oxide crystals. Rows of adatoms, possibly Cr^{3+} ions of oxide nuclei, are observed above the stripes. Thickening at 625 K leads to the formation of a non-crystalline oxide, which grows up to a limiting thickness of 4.6 nm. The presence of Cr3+ vacancies related to a significant cation transport through the oxide film in this temperature regime is detected. After UHV annealing at 825 or 925 K, the film is anhydrous. The Cr3+ vacancies are accumulated at the metal/oxide film interface. The film crystallizes in epitaxy with the substrate in the following orientation: α -Cr₂O₃(0001) || Cr(110) and α -Cr₂O₃[213:0] || Cr[001].

V. Maurice, S. Cadot, P. Marcus, Surface Science 458 (2000) 195–215

Passivation of alloys

Effect of the chromium content of the alloy on the simulation of passivation (size of the model: $80 \times 80 \times 60 \text{ Å}^3$)

Chromium con- centration in the alloy (%)	Number of planes in which corrosion has propagated (mean)	Probability of passivation	Chromium con- centration in the passive layer (%)	Roughness
12	Perforated	0	_	9.3
13	Perforated	0	_	8.9
14	Perforated	0	-	8.5
15	Perforated	0	_	7.7
16	26	0.375	24	7
17	20	0.75	24.5	5.8
18	15	1	25.2	5.5
22	10	1	30.6	3.6

Simulation of the dissolution and passivation of Fe-22%Cr alloy at the beginning of simulation process (a) and after simulation (b)

M.Legrand, B.Diawara, J.-J.Legrende, Ph.Marcus, Corr.Sci, 44, 773-790 (2002)